SITE INSPECTION WORKSHEETS

(Region I version 6/30/95)

SEMS DocID

621089

WARNING!!

EPA has determined that the status and HRS score of any site that is progressing towards listing on th NPL is confidential. Deliberations regarding listing issues, the site specific status, and HRS scores cannot be released or discussed with non-Agency persons. For additional guidance see April 30, 1993 OSWER Directive 9320.1-11.

		SI	TE LOCATION						
Site Name:	FIBER MA	TERIALS IN	C.						
Street Address:	5 Morin Stre	et, Biddeford Ind	lustrial Park	-					
City:		-	State: Zip Coo		Telephone:				
	Biddeford	_	ME	04005	207-282-7529				
CERCLIS ID#:		-	Coordinates:	Coordinates: Latitude: 43°28'13"					
	MED	048268890		Longitude: 70°2	29'28"				
		OWNER/OPE	RATOR IDENTIFIC	CATION					
Owner: Fiber N	Aaterials Inc.		Operator: Same	•					
Owner Address:	see above		Operator Addres	ss:					
City:			City:						
State:	Zip Code:	Telephone:	State:	Zip Code:	Telephone:				
			I						
		SITE	EVALUATION						
Agency/Organiz	ation:		TDD#:						
Maine Departn	nent of Environ	mental Protection	on		_				
Investigator:	Jean Firth		Date:	October 23, 200)3				
		EF	PA CONTACT						
EPA SAM:	Mr. Gerardo	Millan-Ramos							
Address:	1 Congress St	reeet Suite 1100	(HBS)		-				
City:	Boston		State:	MA	Zip Code:				
					02114-02203				
Telephone:	(617) 918-137	7							
EPA Reviewer:			Date:						

GENERAL INFORMATION

Fiber Materials Incorporated (FMI) is located at 5 Morin Street, Biddeford Industrial Park, Biddeford, Maine at approximately 43°28'13" north latitude and 70°29'28" west longitude (Figure 1). FMI is bordered to the north by Precourt Street, to the east by residential property to the south by commercial property and to the west by Morin Street. Land use in the area of the FMI property is a mixture of industrial and residential uses. The total acreage of all the tracts is approximately 14 acres (4).

The FMI facility is comprised of five buildings (Figure 2). Building 1 is one structure with three buildings attached together and is located on the northwest corner of the site. Each of the component buildings making up Building 1 were built at separate times and are currently referred to as Work Areas. Work Area 1 was built in 1975 and has an area of 20,000 square feet (ft²). Work Area 2 and Work Area 6, both approximately 13,000 ft² were added in 1976 and 1979-1980 respectively. Building 3, located east of Building 1, was built in 1977 and has an area of 20,000 ft². Building 4, a two-story building built in 1977/1978, occupies 60,000 ft² on the east side of the property south of Building 3. Building 5 is located on the southeast corner or the site, was built in 1979/1980, and has an area of 20,000 ft². Built in 1980, the Hazardous Materials Storage Building along with the Nitrogen Storage Area is located near the northeast corner of the site. The #1 Hazardous Materials Storage Building has an area of approximately 600 ft² (4).

Parking areas on the property are paved although driveways around the buildings are unpaved. Grass and some shrubs surround most of the buildings. The southwest corner of the site is vegetated with shrubs and trees. During site visits several ledge outcrops at various locations throughout the site were noted.

There are 32 RCRA notifiers and 6 CERCLA sites in the Biddeford-Saso area. Abutters to the property-include a residential area to the east, a vacated warehouse to the south, the Biddeford Textile Company across the street to the west, and the turnpike connector road running along the north side of the property.

The access to the property is restricted by a ten-foot high chain-linked fence with three strands of barbed wire on top. There is a visitor's parking area outside the fence with a pedestrian access gate. The employee's entrance is on the southwest corner of the lot in front of Building 5. Only employees may drive on the property during shift changes. The pedestrian gate and the employee vehicle gate are open from 6:00 AM to 7:00 PM Monday through Friday to allow visitors to enter and the employee shift changes. The FMI operation runs twenty-four hours a day with two twelve hour shifts and security is present at all times (4).

The 1992 TRCC Preliminary Assessment Plus Report (PA+) identified 7 Areas of Concern (AOCs). These are detailed in Appendix A.

The FMI site, prior to development, was first a farm then became a sand and gravel borrow pit. FMI bought one of tract of the property from the Town of Biddeford in 1971, a second tract in 1975 and a final tract from Richard Harper in 1975 (4).

FMI began manufacturing aerospace composite materials onsite in 1975. Products manufactured are carbon fiber-impregnated components used as missile nose cones and rocket engine nozzles. Composite materials are made by weaving metallic or synthetic materials into 2-dimensional and 3-dimensional shapes, which are impregnated with resin at high temperatures and pressures (16:p2). FMI also manufactures insulation material used for industrial purposes (4).

Work Area 1 is primarily where weaving takes place. Hazardous waste generated previously in this area was from the production of metal "rods", which is thin wire-like material. In this area the rod is spun off reels and cut to length. They were then passed through three trays if cleaning solution containing oakite, acetone, and water. Currently the solutions consist of Spic and Span (a commercially available cleaning agent) and alcohol. The solution containing oakite, acetone and water was considered hazardous and according to FMI comprised a very small waste stream. The product manufactured is a 2 or 3-dimensional shape of a specified configuration (e.g. nose cones, nozzles, etc.)(4; 16:p2).

Work Area 2 is where the densification of the shaped fabrics or composites produced in Work Area 1 are impregnated with either petroleum pitch, coal tar pitch, or furfuryl alcohol-based resin (also referred to as P-3). The composites, which are formed, undergo extreme heat treatment in vessels called carbonizers. Exhaust from the carbonizers goes through an incinerator to drive off volatiles. Next the composites are put into another vessel where they are pressurized and carbonized. The exhaust from this procedure goes through a scrubber. Two wastes are generated in this process: coke clinkers and spent caustic soda scrubber solutions (which has a pH greater than 12) (4).

Fiber-form is produced in Building 3. This product is a heat resistant material, which is used as insulation in industrial furnaces. Fiber, synthetic resin, and water are mixed into slurry, cast into billets, air-dried, baked in ovens, then graphitized at 2700°C in an induction furnace. Each of the heating units has incinerators to control their gaseous emissions. No hazardous waste is produced from this process (4; 16:p2). The industrial (induction) furnaces had capacitors containing PCBs. FMI is in the process of replacing these capacitors.

Building 4 is where the administration and research laboratories are located. In addition, high strength-small diameter fiber is produced in Building 4. Rolls of fiber are passed through a stretch oven and a box oven and then through high temperature ovens (2700°C). Exhaust gas from the ovens passes through a packed tower-recircuitating scrubber, which removes hydrogen cyanide gas from the exhaust air stream. At the time of the TRCC site visit, space in this building was used for research and development and general office work only. X-ray processes, which occur in this building, are a part of the research and development work (4; 16:p3).

Building 5 currently houses the flex-fram process and previously was used for manufacturing "sputtering targets." One of the operations involved grinding down sulfide plates, which are used as "sputtering targets" in the electronic industry. A cadmium sulfide slurry waste was generated in a very small quantity as well as pieces of cadmium sulfide plates. This process was discontinued years ago according to FMI. The second process involves the production of "flex-fram" which is a flame-retardant material that has a mud-like consistency. The process involves mixing various solvents and epoxy resin in a Hobart mixer. Waste epoxy resin solution is treated as hazardous waste and was manifested off-site at a range of three 55 gallon drums in 1984 (16).

Information regarding Hazardous Waste Area #1 and #2 as well as Work Area 6 is detailed in Appendix A under three appropriate AOC designations.

All wastes generated in each area were stored in either Hazardous Material Storage Area #1 or #2 until manifested offsite by a licensed transporter.

Description of each Source:

Identify each source area by name and number, and classify each source into a source type category (See Table 1). Determine the dementions of each source. Identify the hazardous substances associated with each source. Determine the containment characteristics for each source by pathway (see HRS Tables 3-2, 4-2, 6-3 and 6-9).

Source 1: Contaminated Soil (Tier D)

There were no observed areas of contamination at the FMI facility, however no soil samples were collected from the site to confirm whether or not there is contamination. Therefore, the entire site will be evaluated as if it is contaminated. The site is 14 acres; hazardous substances used at the facility include: metals, PCBs, semi-volatile organic compounds, volatile organic compounds and acids (54).

Source 2: Discharge to the POTW (Waste Source Tier B)

FMI discharges 1000 gallons a day of wastewater to the Biddeford POTW. It is assumed that this has occurred since the facility was built in 1975.

Source 3: Discharge from Bld #3 (Wastesource Tier B)

Between December 1989 and April 1990 FMI discharged greater than 100 gallons of Thoroguard treated water to Thacher Brook. Thoroguard contains phenol up to 2300 ppm (26; 28).

		Pathway Availability						
Source #	Source Type	GW	SW	SE	A			
1	Contaminated Soil	У	v	v				
2	Waste Stream	n	v		n			
3	Waste Stream	n	v	n	n			
4		<u> </u>			-11			
5		1						
6		† · · · · · · · · ·						
7								
8		 						
9								

Legend:

Y = available to pathway

N = not available to pathway

? = availability unknown

I = ineligible waste

SOUP SE EVALUATION (continued)

Hazardous Waste Quantity (HWQ) Calculations: SI Tables 1 and 2 (See HRS Tables 2-5, 2-6, and 5-2).

For each source, provide HWQ calculations by tier and provide assumptions

Note: HWQ calculations may be different for the soil exposure pathway

Source 1: Contaminated Soil (Tier D)

The site is 14 acres in size.

14 acres /0.78 = 17.95

Source 2: Discharge to the POTW (Waste Source Tier B)

FMI discharges 1000 gallons a day to the City of Biddeford POTW.

1000 gallons / day x 350 days/year x 28 years =9,800,000 gallons

9,800,000 gallons / 5000 = 1960

Source 3: Discharge from Bld #3 (Wastesource Tier B)

Greater than 100 gallons of water was discharged to Thacher Brook. 100 gallons/5000 = 0.02

Source 1 is available to soil, groundwater and air. Total HWQF = 17.95

Sources 1, 2 and 3 are available to surface water. Total HWQF = 1977.97

SI TABLE 1:

HAZARDOUS WASTE QUANTITY (HWQ SCORES FOR SINGLE SOURCE SITES AND FORMULAS FOR MULTIPLE SOURCE SITES

	.			ource Sites HWQ scores)		Multiple Source Sites
TIER	Source Type	HWQ = 10	HWQ = 100	HWQ = 10,000	HWQ = 1,000,000	Divisors for Assigning
A Hazardous Constituent Quantity	N/A	HWQ = 1 if Hazardous Constituent Quantity data are complete HWQ = 10 if Hazardous Constituent Quantity data are not complete	>100 to 10,000 lbs	>10,000 to 1 million lbs	> 1 million lbs	Source WQ Values
B Hazardous Wastestream Quantity	N/A	≤ 500,000 lbs	> 500,000 to 50 million lbs	>50 million to 5 billion lbs	> 5 billion lbs	lbs ÷ 5,000
	Landfill	≤ 6.75 million cubic ft ≤ 250,000 cubic yds	>6:75 million to 675 million cubic ft >250,000 to 25 million cubic yds	>675 million to 67.5 billion cubic ft >25 million to 2.5 billion cubic yds	>67.5 billion cubic ft > 2.5 billion cubic yds	cubic ft. ÷ 67,500
	Surface Impoundment	≤ 6,750 cubic ft ≤ 250 cubic yds	>6,750 to 675,000 cubic ft >250 to 25,000 cubic yds	>675,000 to 67.5 million cubic ft >25,000 to 2.5 millioncubic yds	>67.5 million cubic ft > 2.5 million cubic yds	cubic yds. ÷ 2,500 cubic ft. ÷ 67:5 cubic yds. ÷ 2.5
	Drums	≤ 1,000 drums	>1,000 to 100,000 drums	>100,000 to 10 million drums	>10 million drums	drums ÷ 10
C Volume	Tanks and non- drum containers	_≤ 50,000 gallons	50,000 to 5 million gallons	5 million to 500 million gallons	> 500 million gals	gallons ÷ 500
	Contaminated soil	≤ 6.75 million cubic ft ≤ 250,000 cubic yds	>6.75 million to 675 million cubic ft >250,000 to 25 million cubic yds	>675 million to 67.5 billion cubic ft >25 million to 2.5 billion cubic yds	>67.5 billion cubic ft > 2.5 billion cubic yds	cubic ft. ÷ 67,500 cubic yds. ÷ 2,500
·	Pile	≤ 6,750 cubic ft ≤ 250 cubic yds	>6,750 to 675,000 cubic ft >250 to 25,000 cubic yds	>675,000 to 67.5 million cubic ft >25,000 to 2.5 million cubic yds	>67.5 million cubic ft > 2.5 million cubic yds	cubic ft. ÷ 67.5 cubic yds. ÷ 2.5
	i Ouler i	≤ 6,750 cubic ft ≤ 250 cubic yds	>6,750 to 675,000 cubic ft >250 to 25,000 cubic yds	>675,000 to 67.5 million cubic ft >25,000 to 2.5 million cubic yds	>67.5 million cubic ft > 2.5 million cubic yds	cubic ft. ÷ 67.5 cubic yds. ÷ 2.5

SI TABLE 1:

HAZARDOUS WASTE QUANTITY (HWQ SCORES FOR SINGLE SOURCE SITES AND FORMULAS FOR MULTIPLE SOURCE SITES

	Single Source Sites (assigned HWQ scores)					Multiple Source Sites
TIER	Source Type	HWQ = 10	HWQ = 100	HWQ = 10,000	HWQ = 1,000,000	Divisors for Assigning Source WQ Values
	Landfill	≤ 340,000 ft² ≤ 7.8 arces	> 340,000 to 34 million ft ² >7.8 to 780 acres	>34 million to 3.4 billion ft ² >780 to 78,000 acres	>3.4 billion ft ² >78,000 acres	ft ² ÷ 3,400 acres ÷ 0.078
ъ	Surface Impoundment	≤ 1,300 ft² ≤ 0.029 acres	> 1,300 to 130,000 ft ² >0.029 to 2.9 acres	>130,000 to 13 million ft² >2.9 to 290 acres	>13 million ft ² >290 acres	ft ² ÷ 13 acres ÷ 0.00029
D Area	Contaminated soil	≤ 3.4 million ft² ≤ 78 acres	>3.4 million ft² to 340 million ft² >78 to 7,800 acres	>340 million to 34 bil. ft ² >7,800 to 780,000 acres	>34 billion ft² >780,000 acres	ft ² ÷ 34,000 acres ÷ 0.78
,	Pile	≤ 1,300 ft ² ≤ 0.029 acres	>1,300 to 130,000 ft ² >0.029 to 2.9 acres	>130,000 to 13 million ft ² >2.9 to 290 acres	>13 million ft² >290 acres	ft ² ÷ 13 acres ÷ 0.00029
1000 H	Land treatment cubic yd. = 4 drums =	≤ 27,000 ft² ≤ 0.62 acres	>27,000 to 2.7 million ft² >0.62 to 62 acres	>2.7 mil. to 270 million ft ² >62 to 6,200 acres	>270 million ft ² >6,200 acres	ft ² ÷ 270 acres ÷ 0.0062

	CITE WO TE 4.1	ULTIPLE SOURCE SITES
	SITE WQ Total	HWQ Score
	1 (a) to 100 >100 to 10,000 >10,000 to 1,000,000	0 1(b) 100 10000
(a) If the WG	>1,000,000	

⁽a) If the WC total is between 0 and 1, round to 1.

⁽b) If the hazardous constituent quantity data are not complete, assign the score of 10.

SI TABLE 3: WASTE CHARACTERIZATION WORKSHEET

Enter "NA" for substances which are not available to a pathway.

Enter "NL" for substances values not listed in SCDM.

Enter "--" for values not calculated due to substances values not listed in SCDM.

Provide footnote for substances listed in table but not used for scoring purposes (e.g. BTEX substances attributable to a gasoline tank.)

Sources:

1. Contaminated Soil

3. Discharge from Bld #3

2. Discharge to POTW

SCDM Version: June 1996 Control Control	from Bld #3	•	
Strong S		P.PATHWAY	7
SCIAN Color Colo	on: Tune 1006		ď
No. Section No.	3m. 3amc 1990	io and the second	
No. Market State State	The state of the s	R AIR BATHWAY	
Second According Control Con	· / 1 - 11 - 11 - 11 - 11 - 11 - 11 - 11	Ecolog X Ghasons	
III Accompany No. I I 0.4 500 NL 500		xildx: x Mob xPers: Particulate Pox:x	
18-1 Antimode 10	表现是这种是多种的	* X-Pers: x-Ecobionec (HRS Table Mobility Value	
18-1 Antimode 10		ie (HRS Value (HRS 6-13)" (HRS Table (HRS Tabl	55 F-12 - E-17
18-1 Assessey 18-2 18-	Hazardous Substance Tox	16 4-29) - Table - 6 [16-12] 6 [13)	
18-1 Answeringer NL 1 0.4 500			Reference
18-1 Ammonis 100	· · · · · · · · · · · · · · · · · · ·	0 20,000 G/F 0.2 2	41:p3
18-2 Ammonia 100 1 100 0.0007 0.07 0.5 0.015 100 0.07 0.5 0.015 0.07 0.035 0.035		U/I U.UZ	
10 1 1 1 1 1 1 1 1 1			54
18-2 PARIUM 10 0.01 0.01 1 10,000 5 50,000 10 10 500 5F-97 3100 500 0.05 5F-97 P 0.000 0.08 3 18-2 Benzele 100 1 100 0.4 40 5000 26+05 100 40 500 20,000 40 22+05 40 20,000 G 1 100 54 19-3 18-2 Benzele 1000 0.0001 1 1 10,000 5000 56+07 1000 5000 5E-97 1000 5000 5E-97 1000 5000 5E-97 1000 5E-97 1000	100000	- 100	9
18-2 Benzele	70,0	0.002 0.02	41:p3
18-2 Benze(apyrene 10,00 0.000 0.01 1 10,00 50,000 5E+08 10,00 0.000 5E+08 1.00 0.000 0.000 5E+08 1.00 0.000 5E+08 0.00 0.000 5E+08 0.000 0.000 5E+08 0.00 0.000 5E+08 0.00 0.000 5E+08 0.000 5E+08		0.000 0.8	3
18-3 Benzo(ph)rene 10,000 0,000 1 1 10,000 0,000 59,000 59,000 58,000	7	10 0E-03 0.0008	
18-3 Benzo(g,h.))perylene		100	
18-3 Benzag(k)fluorantene 100 0.0001 0.01 1 100 5.0000 SE+05 10.000 0.0000 5.0000 SE+05 0.0000 0.0000 5.0000 SE+05 0.0000 5.0000 SE+05 0.0000 SE+05			
B-3 Benzo(k)fluoramhene 100 0.0001 0.01 1 100 5.000 5E+05 10,000 10,000 5,000 5E+05 0.01 500 .			
18-3 Benz(a)anthracene			
B-13 Butanone, 2 (MEK) 10 1 10 0.4 4 0.5 2 1 0.4 4 0.5 2 1 0.4 0.5 0.2 4 2 0.4 0.2 G 1 10 54		5.00	
B-4 Burylenzylphthalate	Butanone 2- (MEK)	0.000	
1 B-4 CADMIUM 10,000 0.01 100 1 10,000 5,000 5,000 100 100 500 5,000 0.1 50 1 500 GP 0.002 0.02 41;p3 1 B-4 Carbon tetrachloride 1,000 1 1,000 0.4 400 50 20,000 100 40 50 2,000 400 20,000 40 2,000 G 1 100 54 1 B-5 Chrysene 10 0.01 0.1 1 10 500 5,000 1,000 5,000 5,000 5,000 5,000 40 20,000 40 2,000 G 1 100 54 1 B-5 Chrysene 10 0.01 0.1 1 10 500 5,000 1,000 5,000 5,000 5,000 5,000 40 20,000 40 2,000 67 1 100 54 1 B-6 CYANIDE 100 1 100 0.4 40 0.5 20 1,000 400 0.5 20 40 20 40 20 40 20 67 1 100 54 1 B-7 Dibenz(a,h)anthracene 10,000 0,0001 1 1 100 0.4 40 50 2,000 NL 50,000 1 50,000 GP 0.002 41;p3 1 B-7 Dibenz(a,h)anthracene 10,000 0,0001 1 1 100 0.4 40 50 2,000 NL 50,000 1 50,000 GP 0.002 41;p3 1 B-7 Dibenz(a,h)anthracene 100 0.1 1 100 0.4 40 50 2,000 NL 50,000 1 50,000 GP 0.02 41;p3 1 B-7 Dibenz(a,h)anthracene 10,000 0,0001 1 1 100 5,000 5,000 5,000 5,000 1 50,000 P 8E-05 0.8 41;p3 1 B-10 Piuoranthene 100 0.1 1 100 0.4 40 50 2,000 NL 50,000 1 50,000 GP 0.02 41;p3 1 B-10 Piuoranthene 100 0.01 1 1 100 5,000 5,000 5,000 5,000 5,000 5,000 GP 0.02 0.2 41;p3 1 B-10 Piuoranthene 100 0.01 1 1 100 5,000 5,000 5,000 5,000 5,000 5,000 6,000 GP 0.02 0.2 41;p3 1 B-11 HpCDF, 1,2,3,4,6,7,8- 10,000 0,000 1 1 1 10,000 5,000 5,000 5,000 5,000 5,000 6,000 6,000 6,000 6,000 6,000 6,000 1 1 1 1,000 5,000 5,000 5,000 5,000 5,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,00		0.002	
B-4 Carbon tetrachloride	C. E		
18-5 Chloroform	~		
18-5 Chrysene	27.4		
1B-6 CYANIDE	~		
B-7 Dibenzofuran		1 0.0002 0.002	
B-7 Dibromochloromethane 100 0.0001 1 1 10,000 50,000 5E+08 NL 50,000 1 50,000 P 8E-05 0.8 41;p3	Dibenzofuran NI	- 1 025 05 0.000	,
B-F Dipermochloromethane 100 1 100 0.4 40 50 2,000 NL 50 40 2,000 P 8E-05 0.8 41:p3		1 500 G/P 0.02	11:p3
B-9 Dis-butyl phthalate 10 0.01 0.1 1 10 5,000 50,000 1,000 5,00		1 02-05 0.8	11:p3
18-10 Fluoranthene 100 0.01 1 1 100 5,000 5E+05 1,000 1,000 5,000 5E+06 1 5,000 100 50,000 G/P 0.02 0.2 41:p3			1:p3
B-10 Florene 100 0.01 1 1 100 5,000 5E+05 1,000 1,000 5,000 5E+06 1 5,000 10 50,000 G/P 0.002 0.2 41:p3		30,000 3/1 0.02 0.2	11:p3
2 B-11 HpCDF, 1,2,3,4,6,7,9- NL NL 0.4 0.5 NL 50,000 1 50,000 P 8E-05 0.8 42:p10 2 B-11 HxCDD, 1,2,3,4,6,7,9- NL NL 0.4 4,000 5,000 2E+07 10,000 4,000 5,000 2E+07 P 8E-05 0.8 42:p10 2 B-11 HxCDF, 1,2,3,4,7,8- 10,000 NL 0.4 4,000 5,000 2E+07 10,000 4,000 5,000 2E+07 P 8E-05 0.8 42:p10 2 B-12 HxCDF, 1,2,3,4,7,8- 10,000 NL 0.4 4,000 5,000 5E+08 NL 50,000 1 50,000 P 8E-05 0.8 42:p10 2 B-12 HxCDF, 1,2,3,6,7,8- 10,000 NL 0.4 4,000 0.5 2,000 NL 0.5 P 8E-05 0.8 42:p10 1 B-12 Indeno(1,2,3-cd)pyrene 1,000 0.0001 0.1 1 1,000 50,000 5E+07 NL 0.5 P 8E-05 0.8 42:p10 1 B-13 MERCURY 10,000 0.01 100 0.4 4,000 50,000 5E+07 NL 50,000 0.1 5,000 P 8E-05 0.8 42:p10 1 B-13 Methy Ethyl Ketone (MEK) 10 1 10 0.4 4 0.5 2 1 0.4 0.5 0.000 50,000 2E+08 40 2E+06 40 2E+06 G/P 0.2 2000 54 1 B-14 Methylene chloride 10 1 10 0.4 4 5 20 1 0.4 5 2 4 2 0.4 0.2 G 1 10 54 1 B-14 Maphthalene 100 1 100 0.4 40 500 20,000 1,000 400 500 2E+05 40 20,000 400 2E+05 G/P 0.2 200 44:p3	luorene 100	0.002 0.2	1:p3
2 B-11 HpCDF, 1,2,3,4,6,7,9- NL NL 0.4 4,000 5,000 2E+07 10,000 4,000 5,000 2E+07 P 8E-05 0.8 42:p10 2 B-11 HxCDF, 1,2,3,4,7,8- 10,000 NL 0.4 4,000 5,000 5E+08 NL 50,000 1 50,000 P 8E-05 0.8 42:p10 2 B-12 HxCDF, 1,2,3,6,7,8- 10,000 NL 0.4 4,000 0.5 2,000 NL 0.5 1 50,000 P 8E-05 0.8 42:p10 1 B-12 Inden(1,2,3-cd)pyrene 1,000 0.0001 0.1 1 1,000 50,000 5E+07 NL 0.5 P 8E-05 0.8 42:p10 1 B-13 MERCURY 10,000 0.01 100 0.4 4,000 50,000 5E+07 NL 50,000 0.1 5,000 P 8E-05 0.8 42:p10 1 B-13 Methy Ethyl Ketone (MEK) 10 1 10 0.4 4,000 50,000 2E+08 10,000 4,000 50,000 2E+08 40 2E+06 40 2E+06 G/P 0.2 2000 54 1 B-14 Methylene chloride 10 1 10 0.4 4 5 20 1 0.4 5 2 4 2 0.4 0.2 G 1 10 54 1 B-14 Naphthalene 100 1 100 0.4 40 500 20,000 1,000 400 500 2E+05 40 20,000 400 2E+05 G/P 0.2 200 44:p3	IpCDF, 1,2,3,4,6,7,8-	5,2 0.02 2	
2 B-11 HxCDD, 1,2,3,6,7,8-	IpCDF, 1,2,3,4,6,7,9- NL	- 02 03 0.8	2:p10
2 B-12 HxCDF, 1,2,3,4,7,8- 10,000 0.0001 1 1 10,000 50,000 5E+08 NL 50,000 1 50,000 P 8E-05 0.8 42:p10 2 B-12 HxCDF, 1,2,3,6,7,8- 10,000 NL 0.4 4,000 0.5 2,000 NL 0.5 P 8E-05 0.8 42:p10 3 B-12 Inden(1,2,3-cd)pyrene 1,000 0.0001 0.1 1 1,000 50,000 5E+07 NL 50,000 0.1 5,000 P 8E-05 0.8 42:p10 3 B-13 MERCURY 10,000 0.01 100 0.4 4,000 50,000 2E+08 10,000 4,000 50,000 2E+08 40 2E+06 40 2E+06 6/P 0.2 2000 54 3 B-13 Methy Ethyl Ketone (MEK) 10 1 10 0.4 4 0.5 2 1 0.4 0.5 0.2 4 2 0.4 0.2 G 1 10 54 4 B-14 Methylene chloride 10 1 100 0.4 40 500 20,000 1,000 400 500 2E+05 40 20,000 400 2E+05 G/P 0.2 200 41:p3 5 B-15 OCDD			
2 B-12 HxCDF, 1,2,3,6,7,8- 10,000 NL 0.4 4,000 0.5 2,000 NL 0.5 P 8E-05 0.8 42:p10 1 B-12 Inden(1,2,3-cd)pyrene 1,000 0.0001 0.1 1 1,000 50,000 5E+07 NL 50,000 0.1 5,000 P 8E-05 0.8 42:p10 1 B-13 MERCURY 10,000 0.01 100 0.4 4,000 50,000 2E+08 10,000 4,000 50,000 2E+08 40 2E+06 40 2E+06 G/P 0.2 2000 54 1 B-14 Methylene chloride 10 1 10 0.4 4 5 20 1 0.4 5 2 4 20 0.4 0.2 G 1 10 54 2 B-15 OCDD NI NI NI NI NI NI NI	1 CD D + 4 + 4 + 1		
B-12 Indeno(1,2,3-cd)pyrene 1,000 0.0001 0.1 1 1,000 50,000 5E+07 NL 50,000 0.1 5,000 P 8E-05 0.8 42:p10 1 B-13 MERCURY 10,000 0.01 100 0.4 4,000 50,000 2E+08 10,000 4,000 50,000 2E+08 40 2E+06 40 2E+06 G/P 0.2 2000 54 1 B-14 Methylene chloride 10 1 10 0.4 4 5 20 1 0.4 5 2 4 20 0.4 2 G 1 10 54 1 1 10 1 10 10 10 10	IXCDF, 1,2,3,6,7,8-	52 03 0.8	
1 1 1 1 1 1 1 1 1 1	TO DO STATE OF THE		
1B-13 Methy Ethyl Ketone (MEK) 10 1 10 0.4 4 0.5 2 1 0.4 0.5 0.2 4 2 0.4 0.2 G 1 10 54 1B-14 Methylene chloride 10 1 10 0.4 4 5 20 1 0.4 5 2 4 2 0.4 0.2 G 1 10 54 1B-14 Naphthalene 100 1 100 0.4 40 500 20,000 1,000 400 500 2E+05 40 20,000 400 2E+05 GP 0.2 200 54 2B-15 OCDD		0 00 00 00 000	
1 B-14 Methylene chloride 10 1 10 0.4 4 5 20 1 0.4 5 2 4 20 0.4 2 G 1 10 54 1 B-14 Naphthalene 100 1 100 0.4 40 500 20,000 1,000 400 500 2E+05 40 20,000 400 2E+05 G/P 0.2 20 41 10 34 2 B-15 OCDD NI NI NI NI NI NI NI	Tethyl Ketone (MEK) 10		
2 B-15 OCDD NI		 	
2[B-13 [OCDD	100	20 1 25 25 1 25 1 10 1	
2 P 15 OCDE			1:p3
2B-15 OCDF NL 1B-16 PCBe			
2B-16 PeCDD 1.2.3.7.8 10.000 0.001 100 1 10,000 50,000 5E+08 10,000 10,000 5E+08 100 5E+06 100 5E+06 G 0.00 200 100 100 100 100 100 100 100 100 1		NO TO A TO	
21B-16 PeCDD, 1,2,3,7,8-	10,00		

SI TABLE 3: WASTE CHARACTERIZATION WORKSHEET

Enter "NA" for substances which are not available to a pathway.

Enter "NL" for substances values not listed in SCDM.

Enter "- -" for values not calculated due to substances values not listed in SCDM. Provide footnote for substances listed in table but not used for scoring purposes

(e.g. BTEX substances attributable to a gasoline tank.)

Sources:

Contaminated Soil
 Discharge from Bld #3

2. Discharge to POTW

,			でも、赤井	地方以	72 (44) 79 3	SUR	FAGE\WA	TER PA	THWA	Value	they And	luf-sali er m	TEA/CITEAU	ATTONION	Property of the State of the St	late are in the same			-
SCDM Version: June 1996	,	GROU	NDWATER THWAY TOX X				100	5.7	14.2			7.30	GAGE W	ATEKPAT	HWAY	4 4 4			
	•	PA	THWAY									GRO	UNDWAT	ER TOP					
	S SEC MINES	1747 2 TE	(Character)	24 IF 11 12		OVER	AND/FL	OODM	GRATI	ON:		SUR	FACE W	ATER		PART AND THE	R PATHW	AV	
SCDM Hazardous Substance 2 B-16 PECDF, 2,2,3,7,8- 2 B-16 PECDF, 2,2,4,7,9- 2 B-16 PECDF, 2,2,4,7- 2 B-16 PECDF, 2 B	4.28	GW.	Mobility	Pers	Pers	Biouce	Pers x	图 5	Frotor	5 Mar.	Ecotox: x	*Tox:x	Tox: x	3/2013	Ecotox x	: Gaseous/	AND TO		P. A. C.
		Mobility	Value	(HRS	. Value	Pot	Bioacc.	Ecotox.	X Pers	Bionec	FERM	Perc. Value	MOD X	ECOLOX: X®	Mob xPers	Particulate	是 编	Tox. x	
		HRS	, (HRS	Tables	(HRS	(HRS	Value (HRS	(HRS	(HRS	Pot. (HRS	Bioacci	HRS	Value	Value (HDC	X Ecobiolice	(HKZ) apie	Mobility	Value .	31 3 H 2 M 2 M 2
Source Life Hazardous Substance	TANCE	Table	Table	4-10 aix	Table	Table	Table	Table	Table	Table	Value (HRS	table	(HRS table	Table 4-29)	Table	10-13)	CHO TROIS	(HKS Table	
2 B-16 PeCDF, 1,2,3,7,8-	10.000	0.0001	1.	1 1	10.000	50,000	#=4-16)*··	4 19)	4-20).:	*.4-20)>	421)	426	4.28)	层侧连	4:30)	(Gor P)		20.0	Reference
2 D-10 1 CCDF, 2,3,4,7,8-	10,000	0.0001	1	- +		50,000 50,000		NL NL				1	,000			P	8E-05	0.8	42:p10
1 B-16 Phenanthrene	NL	0.01		† †		50	JET00	1,000	1,000	50,000 5,000	577.06	1	50,000			P	8E-05	0.8	42:p10
1 B-16 Phenol	1	1	1	1 .	1	5	5	10,000			5E+06 50,000			10	50,000	G/P	0.02		41:p3
1 B-17 Pyrene	100	0.01	1	1	100	50	5,000		10,000		5E+05	1	50	10,000	50,000	G	1	1	26:p4
1 B-18 Sulfuric acid	1,000	1	1,000	0.4	400	0.5	200	10	4	0.5	2	400	200	100	5,000	G/P	0.002	0.2	41:p3
2 B-18 TCDD		0.0001	I	1	10,000	5,000	5E+07		10,000		5E+07	1	5,000	4		G/P	0.02	20	54
2 B-18 TCDF, 2,3,7,8-	10,000	0.0001	I	1	10,000	50,000	5E+08	NL		50,000			50,000		5,000	G/P	0.0002	2	42:p10
1 B-19 Toluene	10	1	10	0.4	4	50	200	100	40	50	2,000	4	200	40	2.000	P	8E-05	0.8	42:p10
1 B-19 Trichloroethane, 1,1,1-		1	. 1	0.4	0.4	5	2	10	4	5	20	0.4	200	40	2,000	G	<u> </u>	10	54
1 B-19 Trichloroethane, 1,1,2-	1,000	1	1,000	0.4	400	50	20,000	10	4	50	200	400	20,000	4	20	G	_ !	1	54
1 B-19 Trichloroethylene	10	1	10	0.4	4	50	200	100	40	50	2,000	4	200	40	200	G		1000	54
1 B-20 Xylene, p- (also use for total)	10	1	10	0.4	4	50	200	100	40	50	2,000	4	200	40	2,000	G	_ i	10	54
															2,000	<u> </u>	ı	10	54

SCDM Version: JUN96

NOTES:

SI Table 3 assumptions: liquid-phase waste disposed of in non-karst terrane, fresh-water river environment values.

[modify PMFV to update table]>> 8E-05 = Particulate Mobility Factor Value based on HRS Figure 6-3.

Chemical info:

BENZOFLUORANTHENE,3,4- = Benzo(b)fluoranthene

FLUORANTHENE = Benzo(j,k)fluorene BUTANONE, 2- = Methy Ethyl Ketone (MEK)

GROUNDWATER PATHWAY

The overall topography varies, with a topographic high of 140 feet above sea level (msl) along the site's southern property line. Based on the available site maps, most of the property appears to be between 140 and 120 feet above msl (47). The general slope of the property is toward the west and the unnamed tributary of Thacher Brook.

The surficial soil is a Glaciomarine deposit with coarse-grained facies, consisting of sand, gravel and minor amounts of silt. The topography is characterized as flat to gently sloping, except where dissected by modern streams; commonly a branching network of steep-walled stream gullies (56). The site consists of sand and gravel with very shallow ledge and several outcrops.

According to a 1962 surficial geology map of Biddeford, the site area was previously used as an open gravel pit (56).

The entire site is located within a sand and gravel aquifer. The minimum thickness of sand and gravel is believed to be 12 feet. The depth to groundwater in the immediate area of the site is approximately 24 feet and downgradient of the site water table is as shallow as 4 feet (57).

The bedrock beneath the FMI property is believed to be a granite of Carboniferous age (55). Based on the observation of several outcrops on the FMI site, bedrock could be at or near the ground surface at several locations (4).

The towns of Biddeford, Saco, Arundel, Kennebunkport, and Dayton are located within four miles of the FMI site. Both private groundwater sources and a public water system serve the population within four miles. The Biddeford-Saco Water District serves the communities of Biddeford and Saco; its source of water is the Saco River upstream of the surface water pathway. They also stock the Kennebunk, Kennebunkport, and Wells Water District (KKW) with make up supplies when the KKW district source, Branch Brook, runs low.

The town of Arundel has approximately 30 percent to 40 percent of its' residents along Route 1 served by the KKW water district. The remaining population of Arundel is served by private and community wells. The portion of Kennebunkport which is included within the four mile radius is served by private wells (4). The community wells that are located within the four mile radius and the estimated number of residents served is shown in the table below (62).

Population Using Groundwater within Four Miles of Fiber Materials Inc., Biddeford

Distance from the Site (miles)	Private Water Supply Population	Community Well Population	Total
0.0-0.25	0	0	
0.25-0.5	0	. 0	
0.5-1	78	0	78
1-2	232	205	78
2-3	339	203	437
3-4	487	0	339
TOTAL	1,136	0	487
	1,130	205	1,341

No groundwater samples have been collected from the site because there was no apparent way to reach the groundwater without drilling monitoring wells.

SI Table 4: GROUNDWATER OBSERVED RELEASE SUBSTANCES (BY AQUIFER)

Note: Mobility equals 1 for all observed released substances.

Sample ID	Hazardous Substance	Substance Concentration ug/L	Bckgrd. ID	Bekgrd. Conc.	Tox. x Mob. = Tox.	References
latile Organic Comp	ounds - (VOCs)				I	
						
ii - Volatile Organic	Compounds - (SVOCs)					
Pesticides						
/I careides			T			
ils/Cyanide						
				 +-		
Mota A	No groundwater samples v			Highest Value		

Notes: No groundwater samples were collected from the site. For this SI evaluation it is assumed that groundwater is contaminated with a substance that has a toxicity of 1000.

SI Table 5: GROUNDWATER ACTUAL CONTAMINATION TARGETS

Notes: Convert all results and SCDM values to ppb or μ g/L.

If sum of percents calculated for I of J index is > or = 100%, consider the well a Level I target;

If sum of I or J index is < 100%, consider the well a Level II target.

Well ID:		Level I:	Level II:	Population Served:		References:		
Sample ID	Hazardous Substance	Conc. (μg/L)	Benchmark Conc. (MCL or MCLG)	% of Benchmark	RfD (J Index)	% of RfD	Cancer Risk Conc. (I index)	% of Cancer Risk Conc.
emi-Volatile Organic C	Compounds - (SVOCs)							
B/Pesticides	-							
etals/Cyanide			<u> </u>					
SCDM Version: J	un-96		Highest Percent		Sum of Percents		Sum of Percents	

Notes: There are no acutual groundwater contamination targets.

GROUNDWATER PATHWAY WORKSHEET

LIKELIHOOD OF RELEASE

1.	OBSERVED RELEASE: If sampling data or direct observation support a release to the aquifer, assign a score of 550. Record observed release substances on SI Table 4.		
		550	*
2.	POTENTIAL TO RELEASE: Depth to aquifer: feet. If sampling data do not support a release to the aquifer, and the site is in karst terrain or the depth to aquifer is 70 feet or less, assign a score of 500; otherwise, assign a score of 340. Optionally, evaluate potential to release according to HRS Section 3.1.2.		
	LR=	550	<u> </u>

			Data	
TAR	GETS	Score	Type	Refs
	Are any wells part of a blended system? Yes No X If yes, attach a page to show apportionment calculations.	-		
3.	ACTUAL CONTAMINATION TARGETS: If analytical evidence indicates that any target drinking water well for the aquifer has been exposed to a hazardous substance from the site, evaluate the factor score for the number of people served (SI Table 5). Level I: 0 people x 10 = 0		2 c	
i	Level II: 0 people x 1 = 0 'Total =	Û		62
4.	POTENTIAL CONTAMINATION TARGETS: Determine the number of people served by drinking water wells for the aquifer or overlying aquifers that are not exposed to a hazardous substance from the site; record the population for each distance category in SI Table 6a or 6b. Sum the population values and multiply by 0.1	22.1		62
5.	NEAREST WELL: Assign a score of 50 for any Level I Actual Contamination Targets for the aquifer or overlying aquifer. Assign a score of 45 if there are Level II targets but no Level I targets. If no Actual Contamination Targets exist, assign the Nearest Well Score from SI Table 6a or 6b. If no drinking water wells exist within 4 miles, assign "0".			
	 	9		62
6.	WELLHEAD PROTECTION AREA (WHPA): If any source lies within or above a WHPA for the aquifer, or if a groundwater observed release has occurred within a WHPA, assign a score of 20; assign 5 if neither condition applies but a WHPA is within 4 miles; otherwise assign "0".	0		60
7.	RESOURCES: Assign a score of 5 if one or more groundwater resource applies; assign "0" if none applies. * Irrigation (5 acre minimum) of commercial food crops or commercial forage crops * Watering of commercial livestock * Ingredient in commercial food preparation * Supply for commercial aquaculture * Supply for a major or designated water recreation area, excluding drinking water use	5		**
	Sum of Targets T =	36.1		

 ^{* -} To be conservative, an observed release is assumed.
 **- To be conservative it is assumed that there are groundwater resources.

SI TABLE 6 (From HRS TABLE 3-12): VALUES FOR POTENTIAL CONTAMINATION GROUNDWATER TARGET POPULATIONS

SI Table 6a: Other Than Karst Aquifers

																-
[ļ				Populati	on Served b	y Wells with	hin Distance	Category				1 .	
Distance From Site	Pop.	Nearest Well (choose highest)	1 to 10	11 to 30	31 to 100	101 to 300	301 to	1001 to	3001 to	10,001 to	30,001 to	100,001 to	300,001 to	1,000,001 to	Pop.	
0 to 1/4 mile	0	20	4	17	53	164	. 1000 522	3000	10,000	30,000	100,000	300,000	1,000,000	3,000,000	Value	Ref.
> 1/4 to 1/2 mile	0	18	2	11	33	102	324	1,633	5,214 3,233	16,325 10,122	52,137	163,246	521,360	1,632,455	0	62
> 1/2 to 1 mile > 1 to 2 mile	78	. 9	1	5	17	52	167	523	1,669	5,224	32,325 16,684	101,213	323,243	1,012,122	0	62
of to 2 mile .	437	5	0.7	3	10	30	94	294	939	2,939	9,385	52,239 29,384	166,835 93,845	522,385 293,842	17	62
2 to 3 mile	339	3.	0.5	2	7	21	68.	212	678	2,122	6,778	21,222	67,777	212,219	68	62
3 to 4 mile	487	2	0.3	1	4	13	42	· 131	417	1,306	4,171	13,060				62
	earest Well =	9								2,500	7,1/1	13,000	41,709	130,596	42	62

SI Table 6b: Karst Aquifers

		Γ	<u> </u>				Population	on Served b	y Wells with	hin Distance	Category				l.	
Distance From Site	Pop.	Nearest Well (choose highest)	1 to 10	. 11 to 30	31 to 100	101 to 300	301 to 1000	1001 to 3000	3001 to	10,001 to	30,001 to	100,001 to	300,001 to	1,000,001 to	Pop.	
o 1/4 mile		20	4	17	53	164	522		10,000	30,000	100,000	300,000	1,000,000	3,000,000	Value	Ref
/4 to 1/2 mile		20	2	11	. 33			1,633	5,214	16,325	52,137	163,246	521,360	1,632,455		
1/2 to 1 mile		20				102	324	1,013	3,233	10,122	32,325	101,213	323,243	1,012,122		
to 2 mile		20		9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
2 to 3 mile			. 2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227		
to 4 mile		20	2	9	26	82	261	817	2,607	8,163	26,068	81,623				
Nearest Well =	· ·	20	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680 260,680	816,227 816,227		.

GROUNDWATER PATHWAY WORKSHEET (concluded)

E CHARACTERIST	TCS			•	SCORE	DATA TYPE	NOT APPLY
assign the calcula greater; if no Act	ited hazardous v ual Contaminati	waste quantity scor ion Targets exist. a	quifer or overlying e or a score of 100 assign the hazardou igrate to groundwa	, whichever is	10		
Assign the highest	t groundwater to	oxicity / mobility v	alue from SI Table	3 or 4.			
Substance(s):	PCB	Arsenic	Cadmium	•	10000		
From Table:	3	3	3		1 1		
•	-			•	1 1		
Assign the waste	Characteristics	score from the tabl	zardous waste quan le below: (from HJ	RS Table 2-7)			
PROD	Characteristics	score from the tabl	e below: (from HF	RS Table 2-7)			
PROD 0	Characteristics	score from the tabl	e below: (from HF	SS Table 2-7)			
PROD 0 >0 to <10	Characteristics	wC Score	e below: (from HF	S Table 2-7)			
PROD 0 >0 to <10 10 to <100	Characteristics	WC Score	e below: (from HF	SS Table 2-7)			,
PROD 0 >0 to <10 10 to <100 100 to <1,000	Characteristics	WC Score	e below: (from HF	SS Table 2-7)			
PROD 0 >0 to <10 10 to <100 100 to <1,000 1,000 to <10,000	UCT	WC Score 0 1 2	e below: (from HF	SS Table 2-7)			
PROD 0 >0 to <10 10 to <100 1000 to <1,000 1,000 to <10,000 10,000 to <1E+05	UCT	WC Score 0 1 2	e below: (from HF	SS Table 2-7)			
PROD 0 >0 to <10 10 to <100 1000 to <1,000 1,000 to <10,000 10,000 to <1E+05 1E+05 to <1E+06	UCT	WC Score 0 1 2 3 6	e below: (from HF	SS Table 2-7)			
PROD 0 >0 to <10 10 to <100 1,000 to <1,000 1,000 to <10,000 10,000 to <1E+05 1E+05 to <1E+06 1E+06 to <1E+07	UCT	WC Score 0	e below: (from H	SS Table 2-7)			·
PROD 0 >0 to <10 10 to <100 1,000 to <1,000 1,000 to <10,000 10,000 to <1E+05 1E+05 to <1E+06 1E+06 to <1E+08	UCT	WC Score 0 1 2 3 6 10 18	e below: (from H	SS Table 2-7)			·
PROD 0 >0 to <10 10 to <100 1,000 to <1,000 1,000 to <10,000 10,000 to <1E+05 1E+05 to <1E+06 1E+06 to <1E+07 1E+07 to 1E+08 1E+08 or greater	UCT	WC Score 0 1 2 3 6 10 18 32 56 100	e below: (from H	SS Table 2-7)			·
PROD 0 >0 to <10 10 to <100 1,000 to <1,000 1,000 to <10,000 10,000 to <1E+05 1E+05 to <1E+06 1E+06 to <1E+08	UCT	WC Score 0 1 2 3 6 10 18 32 56 100	e below: (from H	SS Table 2-7)			,

Multiply LR by T and by WC. Divide the product by 82,500 to obtain the groundwater pathway score for each aquifer. Select the highest aquifer score. If the pathway score is greater than 100, assign 100.

GROUNDWATER	PATHWAY SCORE:
-------------	----------------

LR x T x WC

82,500

Notes:

4.33

Maximum of (100)

ALT. SCHMARIU:

50 × (1,372.4) × 18 = 164.69.

SURFACE WATER PATHWAY

Surface drainage on the property collects in a series of catch basins, which connects to the storm drainage system on Morin Street. According to FMI, there is no permit requirement. The outfall of this drainage system flows through an intermittent stream approximately 985 feet to the probable point of entry (PPE #1) to the surface water pathway, a Thatcher Brook tributary. This tributary flows approximately 1.27 miles to Thatcher Brook, which then flows approximately 3 miles to its confluence with the Saco River. The Saco River eventually discharges into the Atlantic Ocean approximately 6 miles from that point (4, 57). The end of the 15-mile downstream pathway from PPE #1 is 5 miles in to the Atlantic Ocean. FMI also discharges 1000 gallons of wastewater a day to the Biddeford Wastewater Treatment Plant, PPE #2 (61). This discharges through the treatment plant into the Saco River just below Factory Island. It is approximately 4.5 miles from this PPE to the Atlantic Ocean.

Surface Water Pathway Fiber Materials Inc., Biddeford

Water Body	Distance (miles)	Flow Rate (csf)	Wetlands (miles)
Unnamed Tributary (PPE #1) to Thacher Brook	1.27	5	2.35
Thacher Brook to the Saco River	3.27	14	2.3
Saco River to the WWTP (PPE #2)	4.71	3350	NA
Saco River to the Atlantic Ocean	10.27	3350	6.3
Atlantic Ocean	19.71	NA	NA

In-1989-through-early-1990-there were a series of spills from the cooling-tower in building #3. The water that was discharged into a tributary of Thacher Brook contained a chemical called Thoroguard, a biocide and chemical conditioner, which contains sodium molybdate and sodium nitrate (28:p3).

There are no drinking water intakes along the surface water pathway. Although the source of the Biddeford-Saco water supply is the Saco River, the pumping station is located approximately 1.8 miles upstream from the outfall of Thatcher Brook and not within the 15-mile downstream pathway from the site (62).

Thacher Brook, its tributary and the non tidal section of the Saco River are classified "Class B" water bodies under the Clean Water Act. This means the water is acceptable for recreational use, fish and wildlife habitats, agricultural and industrial supply (58). The estuarine sections of the surface water pathway are class SB: "Class SB waters shall be of such quality that they are suitable for the designated uses of recreation in and on the water, fishing, aquaculture, propagation and harvesting of shellfish, industrial process and cooling water supply, hyroelectric power generation and navigation and as habitat for fish and other estuarine and marine life. The habitat shall be characterized as unimpaired." The tidal portion of the Saco River is classified SC "Class SC waters shall be of such quality that they are suitable for recreation in and on the water, fishing, aquaculture, propagation and restricted harvesting of shellfish, industrial process and cooling water supply, hydroelectric power generation and navigation and as a habitat for fish and other estuarine and marine life (58)".

There are 10.95 miles of wetlands along the surface water pathway (59). Thatcher Brook is rated moderate as a fishery habitat and rated high as a deer wintering area. High, moderate and low are ratings given by the Maine Department of Inland Fisheries and Wildlife to express the sensitivity of the area. A high rating indicates the presence of many species. There are 29 State listed sensitive environments in the Atlantic Ocean, 2 in Thacher Brook and 2 in the Saco River.

SI Table 7: SURFACE WATER OBSERVED RELEASE SUBSTANCES

List all substances that meet the criteria for an observed release to surface water; however, do not elimimate a substance from this table if it has a bioaccumulation factor (BCF) less than 500.

Sample ID	Hazardous Substance	Concentration µg/kg	Bckgrd. I.D.	Bckgrd. Conc. μg/kg	BCF	Toxicity x Persistence	Tox. x Pers. x Bioacc.	Ecotox. x Pers. x Ecobioacc.	References
- January C	ompounds = (VOCs)			T					===-
mi-Volatile Orga	nic Compounds - (SVOCs)	1							
B/Pesticides									
als/Cyanide								1	
				Г			I		
	··-	 -		Highest Values					

Notes:

There was no Observed Release to the Surface Water Pathway. Hazardous Substances were detected in an intermittent Stream which flows to the surface water pathway (3).

SI Table 8: SURFACE WATER DRINKING WATER ACTUAL CONTAMINATION TARGETS

Note: Convert all results and SCDM values to ppb or $\mu g/L$.

If sum of percents calculated for I or J index is > or = 100%, consider the intake a Level I target;

If sum of percents calculated for I or J index is < 100%, consider the intake a Level II target.

Intake ID:	Sample Type:	Level I:	Level II:	Population Se	rved:	References:		
Sample ID	Hazardous Substance	Conc. (ug/L)	Benchmark Conc. (MCL or MCLG)		RfD (J Index)	% of RfD	Cancer Risk Conc. (I Index)	% of Cancer Risk Conc.
Volatile Organic C	Compounds - (VOCs)							
Semi-Volatile Org	anic Compounds - (SVOCs)	<u> </u>	I					
PCB/Pesticides								
Metals/Cyanide					l I			
	SCDM Version:	June 1996	Highest Percent		Sum of Percents		Sum of Percents	

Notes: There are no drinking water intakes along the surface water pathway (62).

SURFACE WATER PATHWAY LIKELIHOOD OF RELEASE AND DRINKING WATER THREAT WORKSHEET

LIKE	ELIHOOD OF RELEASE-		Data	
OVE	RLAND/FLOOD MIGRATION	Score	Туре	Refs
1.	OBSERVED RELEASE: If sampling data or direct obsevation support a release to surface water in the watershed, assign a score of 550. Record observed release substances on SI Table 7.	550	7,50	3
2.	POTENTIAL TO RELEASE: Distance to surface water:	 -	 -	
	feet		ļ	
>	If sampling data do not support a release to surface water in the watershed, use the table below to assign a score based on distance to surface water and flood frequency.		i.	
	Distance to surface water < 2,500 feet 500	1.	ŀ	
	Distance to surface water > 2,500 feet, and;	1 .		
	Site in annual or 10-yr floodplain 500			
	Site in 100-yr floodplain 400			
•	Site in 500-yr floodplain 300	1		
	Site outside 500-yr floodplain 100]		
IIVE	LR =	550		
	LIHOOD OF RELEASE- INDWATER TO SURFACE WATER MIGRATION	Score	Data Type	Refs
l.	OBSERVED RELEASE: If sampling data or direct observation support a release to surface water in the watershed, assign a score of 550. Record observed release substances on SI Table 7.	Beore	Туре	Keis
NOTE of the	: Evaluate groundwater to surface water migration only for a surface water body that meets all following conditions.			·
1)	A portion of the surface water is within 1 mile of site sources having a containment factor greater than "0".	·		
2)	No aquifer discontinuity is established between the source and the above portion of the surface water body.			
)	The top of the uppermost aquifer is at or above the bottom of the surface water.			
levation	of top of uppermost aquifer		l	P.
	of bottom of surface water body:	' I		
•	POTENTIAL TO RELEASE: Use the groundwater potential to release. Optionally, evaluate surface water potential to release according to HRS Section 3.1.2			

Note: Groundwater elevation is expected to fluctuate based on variations in precipitation and other factors.

DDINKIN	IC WATED T	TIDE LOCKER COM			Data	•		
	•	HREAT TARGETS				Score	Туре	Refs
within the	water body type, f distance limit in th nit, assign "0" to fa	flow, and number of people watershed. If there is no actors 3, 4, and 5.	e served by eac drinking wate	ch drinking wat r intake within	er intake the target			
-	Intake Name	Water Body Type	Flow	People Served]			·
, .								
			· · · · · · · · · · · · · · · · · · ·		- - -			
Are any intak	es part of a blende	d system?	,		_			
If yes, attach	a page to show app	Yespointment calculations.	No	-				
3.	drinking water in	TAMINATION TARGETS ntake has been exposed to and evaluate the factor so	a hazardous si	ibstance from t	he cite list			
Level I: Level II:		people x 10 = people x 1 =			- Total =	0		62
1 .	DOMES WITH A CO					<u> </u>		
	hazardous subst	CONTAMINATION TARC ing water intakes for the water intakes for the water intakes for the water tance from the site. Assign and multiply by 0.1.	vatershed that h	ave not been e	xnosed to	0		62
	targets for the water Drinking Water	AKE: Assign a score of 5 Targets for the watershed: atersehd, but no Level I ta Targets exist, assign a scorinking water intakes exist	Assign a scor argets. If no Ac ore for the intak	e of 45 if there	are Level II	0		62
		•		————				• . •
•	* Irrigation (5 commercial * Watering of * Ingredient i	Assign a score of 5 if one e applies. 5 arces minimum) of complet forage crops; f commercial livestock; in commercial food preparesignated water recreation	mercial food cr	ops or	e applies;	5		*
· 	water use.		——————	<u>-</u>				
e e		•		Sum of	Taracta -			

Notes: * - resources are assumed.

SI TABLE 9 (From HRS Table 4-14): DILUTION-WEIGHTED POPULATION VALUES FOR POTENTIAL CONTAMINATION FOR SURFACE WATER MIGRATION PATHWAY (a)

]		т—		Number of	people						Number of	people]
Type of Surface Water Body (I	Pop.	Nearest Intake	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to 300,000	300,001 to 1,000,000	1,000,001 to 3,000,000	3,000,001 to 10,000,000	Pop. Value
Minimal Stream (< 10 cfs) Small to Moderate Stream		20	4	17	. 53	164	522	1,633	5,214	16,325	52,137	163,246	521,360	1,632,455	5,213,590	<u> </u>
(10 to 100 cfs)		2	0.4	2	5	16	52	163	521	1,633	5,214	16,325	52,136	163,245	521,359	
Moderate to Large Stream (> 100 to 1,000 cfs)		0	0.04	0.2	0.5	2	5	16	- 52	163	521	1,633				
Large Stream to River (> 1,000 to 10,000 cfs)		0	0.004	0.02	0.05	0.2	0.5	2	5	16	52	1,633	5,214	16,325	52,136	
arge River > 10,000 to 100,000 cfs)		0	0	0.002	0.005	0.02	0.05	0.2	0.5	2	5	. 16	521	1,632	5,214	<u>.</u>
ery Large River > 100,000 cfs)		0	0	0	0.001	0.002	0.005	0.02	0.05	0.2 ·	0.5			163-	521	
hallow Ocean Zone or Great Lake depth < 20 feet)		0	0	0.002	0.005	0.02	0.05	0.2	0.5	2	5	16	5	163	52 521	
Noderate Ocean Zone or Great Lake Depth 20 to 200 feet)		0.	0	0	0.001	0.002	0.005	0.02	0.05	0.2	0.5	2	5 .	16	52	
eep Ocean Zone or reat Lake epth > 200 feet)		0	0	0	0	0.001	0.003	0.008	0.03	0.08	0.3	1	3.	8	26	
Mile Mixing Zone in Quiet lowing River or = 10 cfs)		10	2	9	26	82	261	817	2,607	8,163	26,068	81,623	260,680	816,227	2,606,795	
otes:	Nearest Intake =					<u>-</u> 1									Sum =	#REF!

1) There are no drinking water intakes along the surface water pathway (62).

⁽a) Round the number of people to nearest interger. Do not round the assigned dilution-weighted populaton value to nearest integer.

⁽b) Treat each lake as a separate type of water body and assign it a dilution-weighted population value using the surface water body type with the same dilution weight from HRS Table 4-13 as the lake. If drinking water is withdrawn from coastal tidal water or the ocean, assign a dilution-weighted population value to it using the surface water body type with the same dilution weight from HRS Table 4-13 as the coastal tidal water or the ocean zone.

SI Table 10: HUMAN FOOD CHAIN ACTUAL CONTAMINATION TARGETS FOR WATERSHED

Notes:

Convert all results and SCDM values to $\mu g/kg$ or ppb.

If sum of percents calculated for I or J Index is > or = 100%, consider the fishery a Level I target; If sum of percents calculated for I or J Index is < 100%, consider the fishery a Level II target.

List only those substances that meet the observed release criteria in a fishery within the target distance limit and have a BCF of > or = 500;

BCF values are found on SI Table 7.

Fishery I.D.		Sample Type		Level I:	Level II:	References:		
Sample ID Volatile Organic Comp	Hazardous Substance	Conc. (µg/kg)	Benchmark Conc. (FDAAL)	% of Benchmark	RfD (J Index)	% of RfD	Cancer Risk Conc. (I Index)	% of Cancer Risk Conc.
				Γ				
	Compounds - (SVOCs)		T .					
PCB/Pesticides		· · · · · · · · · · · · · · · · · · ·						
Metals/Cyanide								
Reference Sample:			Highest Percent		Sum of			
Notes:	1.) There was no observed releas	e to a fishery documented (2)	_		Sum of Percents		Sum of Percents	

1.) There was no observed release to a fishery documented (3).

2.) μg/kg - microgram per kilogram; NL - not listed in SCDM Version June 1996.

SI Table 11: SENSITIVE ENVIRONMENT ACTUAL CONTAMINATION TARGETS FOR WATERSHED

Notes:

Convert all results and SCDM values to μ g/kg or ppb.

If sum of percents calculated for I or J Index is > or = 100%, consider the fishery a Level I target; If sum of percents calculated for I or J Index is < 100%, consider the fishery a Level II target.

	Environmental I.D.:		Sample Type:	Level I:	Level II:	Environmental Value:
	Somula ID	***	Conc.	Benchmark Conc.	% of	value.
	Sample ID	Hazardous Substance	(ug/kg)	(AWQC or AALAC)	Benchmark	References
	Volatile Organic Compounds - (Vo)(s)				
	Semi-Volatile Organic Compounds	-(SVOCs)	<u></u>	<u> </u>		
•						
•	PCB/Pesticides					
	1 Contesticités		T			
	Metals/Cyanide		L			
SCDM Vassis	T 1006					
SCDM Version: References:	June 1996			Highest Percent		

Notes: There was no observed release to the Surface Water Pathway (3).

	D CHAIN THREA			· · · · · · · · · · · · · · · · · · ·		Score	,	Data Type	Refs
Record the wa no fishery wit	ater body type and f hin the target distan	low for each fishery ace limit, assign a so	within the targetore of 0 at the	get distance bottom of th	limit. If there in is page.	is ·			
Fishery Name:	Unnamed Tributar	ry Water Body:	stream	Flow:	5 cfs	-		1	
Species:		Production:		lbs/yr					
Species:		Production:		lbs/yr					4; 64; 65
Species:		Production:		lbs/yr			.		,, .
Fishery Name:	Thacher Brook	Water Body:	stream	Flow:	14 cfs				
Species:		Production:		lbs/yr					
Species:		Production:		lbs/yr			ł		
Fishery Name:	Saco River	Water Body:	River	Flow:	2250 -6-			"	
Species:		Production:	ICIVOI	lbs/yr	3350 cfs	'	- 1	ŀ	
Species:		Production:		lbs/yr				1	
FOOD CHAIN	INDIVIDUAL (Sel	lect highest value)		<u> </u>			- 1	- 1	
	NTAMINATED FI								
	ints for a Level I fisl		mples dosuma						•
substance wit	h a bioaccumulation ance limit (SI Table	n factor (BCF) great	er than or equa	at an obsert	ved release of a a fishery within	·			•
	Substance:			_					•
Assign 45 noi	nts for a Level II fis	here if surface water	-/	-				- 1	
observed relea	ise of a substance w	ith a bioaccumulati	on factor oreate	iples docum	ent an			ł	
500 to a fisher	ry within the target	distance limit (SI Ta	able 10). List S	Substances:	juai to				
						İ	- .		
	Substance:							İ	
	Substance:			_				1	
POTENTIALL	Y CONTAMINATI	ED FISHERIES:		_				ŀ	-
Assign 20 poir	nts for a potential fis	shery if there is an o	hserved release	of a cuboto	maa wish -	Ī	-		
Dioaccumulati	on factor greater tha	in or equal to 500 (S	I Table 7) to a	watershed a	Containing		ł	- 1	
usnenes within	n the target distance	limit, but no Level	I or Level II fig	heries are s	cored				
observed release	is no fishery documo se sample point.	ented between the P	PE and the mo	st downstre	am .				
·	se sample point.						`		,
If there is no of	bserved release of a	substance with a Bo	CF greater than	or equal to	500 to a		i	ı	٠.
watershed, assi	ign a value for poter	tially contamination	a fisheries from	the table b	elow		1		•
using the lower	st flow at all fisherie	es within the target of	listance limit.				İ		
· <u> </u>						· ·	1		
west Flow			<u> </u>	FCI Value] .		- 1	•
0 cfs		<u> </u>		20]	İ		
to 100 cfs 100 cfs, coastal t	idal water			2	1	1			
eans or Great La		ĺ		0 .			1]
mile mixing zone				 _		4			
wing river	on quiei]		10]
					FCI Value	1 20			
				CTD 4 CTT	FCI Value =		ֈ		3; 65
tes:				SUM OF T	ARGETS T =	20			

SURFACE WATER PATHWAY (continued) ENVIRONMENTAL THREAT WORKSHEET

When measuring length of wetlands that are located on both sides of a surface water body, sum both frontage lengths. For a sensitive environment that is more than one type, assign a value for each type.

ENVIRONMENTAL TH	REAT TAR	GETS			_		Score	Туре	Refs
Record the water body and 12). If there is no sensitive	nd flow for eac ve environmen	ch surface water sens nt within the target di	itive environment within stance limit, assign a scor	the target dista	nce (see	SI Table			
	•	_	,		DOMOM	or the page.			
Environment Type						· ·		1	j
(SI Table 13)	·	Water Body Nan	ne		F	low	İ		1
2 State Listed Sensitive		ts;		-			7	1	1
Wetlands; C		Thacher Brook	 ·	_	14	cfs		ł	58; 63; 64; 6
2 State Listed Sensitive	Env.;Wetland			· -					ŀ
CWA		Saco River		٠.	3350	o cfs		ľ	ŀ
Wetlands		Unnamed Tributa	<u> ry</u>	, _	5	cfs		ł	
29 State Listed Sen	isitive Env.	Atlantic Ocean	<u></u>	•	<u> N</u> A	cfs		J	1
9							」		
ACTUAL CONTAN	MINATION S	ENSITIVE ENVIRO	NMENTS: If sampling d	ata or direct of	oservatio	on indicate	ļ	1	
any sensitive enviror	nment has bee	n exposed to a hazar	lous substance from the s	ite, record this	informa	tion on SI		1	1
Table 11, and assign	a factor value	e for the environment	(SI Tables 13 and 14).	•				l	
						•	1	ļ	İ
			•			•			}
Substa	ance(s):		,					i .	
545544								ŀ	
_					•		İ	l	
From	Table:								
							1		
Environmental Type		Environment	Multi-line (10 fo				4		
(SI Table 13)		Value (SI	Multiplier (10 for Level I			Product	ĺ		
		Tables 13 & 14)	Level	ц)			1		
									4
			х	=	† —	0	1		
			x	=	† — ·	0	1 1		
·		<u>_L</u>	х	=		0	1		
10.	 -						0		
	POTENTIA	L CONTAMINATION	ON SENSITIVE ENVIRO	NMENTS:					
Flow		Dilution weight	Environmental	Type and	Pot.	Product	1 1	,]	
		(SI Table 12)	Value (SI Tables		Cont.		[]	ĺ	
		1		•			1	. [
14]		
•	cfs	l .	CWA .	5 x	0.1	0.05	1	•	
3350 ocean	cfs		CWA	5 x	0.1	0.0005		i	
ocean ·	cfs cfs		29 State Sen. Env.	725 x	0.1	0.00725	1 1	ł	4; 58; 63;
3350	cfs	1 . i	2 State Sen. Env.	25 x	0.1	0.25		ł	64, 65
5	cfs		2 State Sen. Env.	25 x	0.1	0.0025	ł		
14	cfs	· · · · · · · · · · · · · · · · · · ·	2.3 mi. Wetlands	75 x	0.1	7.5			
3350	cfs		2.3 mi. Wetlands 6.3 mi. Wetlands	75 x	0.1	0.75		ľ	
		1 0.001 X	o.5 mi. Wellands	150 x	0.1	0.015		.].	
Notes:		· ·					8.57525		
44.							8.57525		

SI TABLE 12 (HRS Table 4-13): SURFACE WATER DILUTION WEIGHTS

*	Type of Surface Water Body	Assigned Dilution Weight	
	Descriptor	Flow Characteristics	· · · · · · · · · · · · · · · · · · ·
	Minimal Stream	< 10 cfs	1
* .	Small to Moderate Stream	10 to 100 cfs	0.1
	Moderate to Large Stream	> 100 to 1,000 cfs	0.01
*	Large Stream to River	> 1,000 to 10,000 cfs	0.001
	Large River	> 10,000 to 100,000 cfs	0.0001
	Very Large River	> 100,000 cfs	0.00001
	Coastal Tidal Waters	Flow not applicable; depth not applicable	0.0001
	Shallow Ocean Zone or Great Lake	Flow not applicable; depth less than 20 feet	0.0001
	Moderate Depth Ocean Zone or Great Lake	Flow no applicable; depth 20 to 200 feet	0.00001
	Deep Ocean Zone or Great Lake	Flow not applicable; depth greater than 200 feet	0.000005
	3-Mile Mixing Zone in Quiet Flowing River	10 cfs or greater	0.000003

^{*} Check (x) appropriate dilution weight.

SI TABLE 13 (HRS TABLE 4-23) SURFACE WATER AND AIR SENSITIVE ENVIRONMENTS VALUES

*	SENSITIVE ENVIRONMENT	ASSIGNED VALUE
	Critical habitat for Federal designated endangered or threatened species Marine Sanctuary National Park Designated Federal Wilderness Area Ecologically important areas identified under the Coastal Zone Wilderness Act Sensitive Areas identified under the National Estuary Program or Near Coastal Water Program of the Clean Water Act Critical Areas indentified under the Clean Lakes Program of the Clean Water Act (subareas in lakes or entire small lakes) National Monuments (air pathway only) National Seashore Recreation Area	100
	Habitat known to be used by Federal designated or proposed endangered or threatened species National Preserve National or State Wildlife Refuge Unit of Coastal Barrier Resources System Coastal Barrier (undeveloped) Federal land designated for the protection of natural ecosystems Administratively Proposed Federal Wilderness Area Spawning areas critical for the maintenance of fish/shellfish species within a river system, bay, or estuary Migratory pathways and feeding areas critical for the maintenance of anadromous fish species within river reaches or areas in lakes or coastal tidal waters in which the fish spend extended periods of time. Terrestrial areas utilized by large or dense aggregations of vertebrate animals (semi-aquatic foragers) for breeding National river reach designation as recreation	75
	Habitat known to be used by State designated endangered or threatened species Habitat known to be used by a species under review as to its Federal endangered or threatened status Coastal Barrier (partially developed) Federally designated Scenic or Wild River	. 50
*	State land designated for wildlife or game management State designated Scenic or Wild River State designated Natural Area Particular areas, relatively small in size, important to maintenance of unique biotic communities	25
*	State designated areas for the protection of maintenance of aquatic life under the Clean Water Act	5
*	Wetlands See SI Table 14 (Surface Water Pathway) or SI Table 23 (Air Pathway)	

^{*} Check (x) all environments impacted or potentially impacted by the site.

SI TABLE 14 (HRS TABLE 4-24): SURFACE WATER WETLANDS FRONTAGE VALUES

*	Total Length of Wetlands	Assigned Value
	Less that 0.1 mile	0
	0.1 to 1 mile	25
	Greater than 1 to 2 miles	50
*	Greater than 2 to 3 miles	75
*	Greater than 3 to 4 miles	100
*	Greater than 4 to 8 miles	150
	Greater than 8 to 12 miles	250
	Greater than 12 to 16 miles	350
	Greater than 16 to 20 miles	3 450
	Greater than 20 miles	500

^{*} Check (x) highest value for each applicable flow characteristic.

SURFACE WATER PATHWAY (concluded) WASTE CHARACTERISTICS, THREAT, AND PATHWAY SCORE SUMMARY

WASTE C	HARACTERIST	ICS :					Score
If an the w If no	atershed, assign th	ie calculated hazi ition Targets exis	ardous waste	numan food chain, or enviro quantity score, or a score of hazardous waste quantity so	f 100 whichever is greater		100
racto	gn the highest valurs below. Multiply	y each by the sur	3 or SI Table	7 for the hazardous substantial azardous waste quantity sco	nce waste characterization re and determine the waste		
		DW	<u> </u>	НГСТ	ET	1	
	Substance(s):	РСВ		Benzo(a)anthracene	Benzo(a) pyrene		
<u> </u>	Value:	10,000		5.00E+08	5.00E+08	1	
ote: Use fo	From Table:	3		7	7		
						<u> </u>	
score i	for each threat from	m the table below	e quantry sco	ores. Assign the waste char	acteristics		
<u> </u>	Product	WC Score	DWT	HFCT	ET	1	
0		0				1	
> 0 to	< 10	1				1	
10 to <	< 100	2		:		1	
100 to	< 1,000	3				1	
1,000 (to < 10,000	6					
10,000	to <1E+05	10				1	
1E+05	to < 1E+06	18					
1E+06	to < 1E+07	32	*				
1E+07	to < 1E+08	56				-	
1E+08	to < 1E+09	100					
1E+09	to < 1E+10	180					
1E+10	to < 1E+11	320		*	*	-	
1E+11	to < 1E+12	560					-
1E+12	or greater	. 1,000					
* check	(x) the WC score	calculated for ea	ch threat				٠
			Substance	Value	Product	WC Sc	ore (from Table)
Toxicity/	Water Threat Persistence	10,000	х	1.E+02 =	1.E+06	32	(Max. of 100)
Toxicity/ Bioaccu	ain Threat Persistence amulation	500,000,000) x	100	5.E+10	320	(Max. of 1000)
cotoxicity	ental Threat //Persistence/	500,000,000	x	100	5.E+10	320	(Max. of 1000)

SURFACE WATER PATHWAY THREAT SCORES

		HUAI SCOP	NEO .			
Threat (T)	Likelihood of Release (LR) Score	Target (T) Score	Pathway Waste Characteristics (WC) Score (determined above)	Calculated Threat Score LR x T x WC 82,500	Overall Score	
Drinking Water (DW)	500	5	32	0.96969697	0.97	(max. of 100)
Human Food Chain (HFC)	500	20	320	38.78787879	38.79	(max. of 100)
Environmental (E)	500	8.57525	320	16.63078788	16.63	(max. of 60)
			Totals:	56.38836364	56.39	

Multiply LR by T and by WC. Divide the product by 82,500 for each threat (T). Sum the threat scores to obtain the surface water pathway score for each watershed/migration route. Select the highest watershed/migration route score. If the pathway score is greater than 100, assign 100.

(DWT + HFCT + ET) =

56

Notes:

(maximum of 100)

SOIL AND AIR PATHWAYS

The FMI facility is comprised of five buildings. Building 1 is one structure with three buildings attached together and is located on the northwest corner of the site. Each of the component buildings making up Building 1 were built at separate times and are currently referred to as Work Areas. Work Area 1 was built in 1975 and has an area of 20,000 square feet (ft²). Work Area 2 and Work Area 6, both approximately 13,000 ft² were added in 1976 and 1979-1980 respectively. Building 3, located east of Building 1, was built in 1977 and has an area of 20,000 ft². Building 4, a two-story building built in 1977/1978, occupies 60,000 ft² on the east side of the property south of Building 3. Building 5 is located on the southeast corner or the site, was built in 1979/1980, and has an area of 20,000 ft². Built in 1980, the Hazardous Materials Storage Building along with the Nitrogen Storage Area is located near the northeast corner of the site. The #1 Hazardous Materials Storage Building has an area of approximately 600 ft² (4).

Parking areas on the property are paved although driveways around the buildings are unpaved. Grass and some shrubs surround most of the buildings. The southwest corner of the site is vegetated with shrubs and trees. During site visits several ledge outcrops at various locations throughout the site were noted.

Access to the property is restricted by a ten-foot high chain-linked fence with three strands of barbed wire on top. There is a visitor's parking area outside the fence with a pedestrian access gate. The employee's entrance is on the southwest corner of the lot in front of Building 5. Only employees may drive on the property during shift changes. The pedestrian gate and the employee vehicle gate are open from 6:00 AM to 7:00 PM Monday through Friday to allow visitors to enter and the employee shift changes. The FMI operation runs twenty-four hours a day with two twelve hour shifts and security is present at all times (4).

The nearest wetland to the FMI site is located about 150 feet northwest from the property line. There are hundreds of acres of wetlands within four miles of the site (59). There are 12 "rare or exemplary botanical features" within a four mile radius of the site (63).

There are a total of 110 employees who work in two 12-hour shifts. There are no residents, schools or daycare facilities on the site. The nearest resident lives approximately 50 feet away from the property line of FMI. Within the 4-mile radius of FMI, the population is varied between urban, suburban, and rural. The nearest school is a High School in Biddeford, located 2 miles southeast from the FMI site. Approximately 20,000 people reside within four miles of the FMI site (51). The following table breaks down the population per distance ring from the site.

Population Residing within Four Miles of Fiber Materials Inc., Biddeford

Distance from facility (in miles)	Total	==
0.00-0.25	122	
0.25-0.50	367	
0.50-1.00	1270	
1.00-2.00	4258	
2.00-3.00	6233	
3.00-4.00	8068	—-
TOTAL	20,318	

Sample ID	OIL EXPOSURE OBSE Hazardous Substance	Substance Concentration		Bckgrd. Conc			
olative Organic Con	npounds - (VOCs)	1	Dengeru. ID	1 Dekgru. Cone	. [To	xicity	References
					T		
					 		 -
					· ·		
					 		
	ļ				 		+
i - Volative Oman	I nic Compounds - (SVOCs)						
	Ic Compounds = (2 AOCs)	Г — — — — — — — — — — — — — — — — — — —					
				 			
				 -			
				 	 		
Pesticides							
				Τ	T		1
ls/Cyanide					<u> </u>		
					Γ		
				 			
			•				
e. No soil so	malaa ka aa la aa aa						
scoring nurne	nples have been collected	from the site.	_	Highest Toxicity	,	·	
overing par po	oses it is assumed that a r	elease of a hazar	dous substance wi	th a toxicity of 1	0,000 has been o	bserved.	
able 15b: SO	IL EXPOSURE RESIDE	NT DODIII ATI	ON TARORMO				
Notes: (Convert all results and SC	DM values to ug/	on targets				
]	If sum of percent calculate	d for I or J Index	is > or = 100% con	oidos socidante I			
	If sum of percent calculate	d for I or J Index	is < 100%, consider	residents Le	evel I targets;		
idence ID:	I	Level I:	Level II:	Population:	ı targets.		
ľ				T Opulation .		% of Cancer	
Sample ID	YT	Conc.	RfD		Cancer Risk	Risk	
Samble III	Hazardous Substance	(mg/kg)	(J Index)				

Residence ID:		Level I:	Level II:	Population :			
Sample ID	Hazardous Substance	Conc. (mg/kg)	RfD (J Index)	% of RfD	Cancer Risk Concentration	% of Cancer Risk Concentration	References
	iponitus + (VOCS)						
emi - Volatile Organ	le Compounds - (SVOCs)						
CB/Pesticides	I T						
letals/Cyanide							
Note:			Sum of Percent		Sum of Percents		

SOIL EXPOSURE PATHWAY WORKSHEET RESIDENT POPULATION THREAT

LIKELIHOOD OF EXPOSURE	_	Data		
 OBSERVED CONTAMINATION: If evidence contamination (depth of 2 feet or less), assign a of "0". Note that a likelihood of exposure score pathway score of "0". 	Score 550	Туре	Refs	
TARGETS	LE =	550	 	<u></u>
2			_	
RESIDENT POPULATION: Determine the nurresidences or attending school or day care on the areas of observed contamination (HRS section 5).	e property and within 200 feet of			
Level I: people x 10 = people x 1 =		0		45
 RESIDENT INDIVIDUAL: Assign a score of 5 exists. Assign a score of 45 if there are Level II resident population exists (i.e. no Level I or Level Section 5.1.3). 	0 if any Level I resident population	0		45
4. WORKERS: Assign a score from the table belo- the site and nearby facilities and within areas of with the site.	w for the total number of workers at observed contamination associated			
Number of Workers	Score			
0	0			
1 to 100	5			
10 to 1,000	10	10		
>1,000	15	10		45
TERRESTRIAL SENSITIVE ENVIRONMENTS sensitive environment (SI Table 16) in an area of	S: Assign a value of each terrestrial			
Terrestrial Sensitive Environment Type	Value			
DECOLD ON	Sum =	0		63
RESOURCES: Assign a score of 5 if any one or a present on area of observed contamination at the s * Commercial agriculture * Commercial siviculture * Commercial livestock production or commercial agriculture	ite; assign "0" if none applies.	5		. *
	Sum of Targets T =	15		

SOIL EXPOSURE PATHWAY WORKSHEET NEARBY POPULATION THREAT

LIKELIHOOD OF EXI	POSURE			Score	Date Type	Ref.
7. Attractiveness/Acco		Value:	5			
Area of Contaminat (from SI Table 18 o		Value:	100			
<u> </u>		Likelihood o (from SI Table 19 or HRS		50	-	45
		. —	LE -	50		

TARGETS	Score	Date Type	Ref.
Assign a score of "0" if Level I or Level II resident individual has been evaluated or if no individuals live within 1/4 mile travel distance of an area of observed contamination. Assign a score of 1 if nearby population is within 1/4 mile travel distance and no Level I or Level II resident population has been evaluated.	1		51
Determine the population within 1 mile travel distance that is not exposed to a hazardous substance from the site (i.e. properties that are not determined to be Level I or Level II); record the population for each distance category in SI Table 20 (HRS Table 5 - 10). Sum the population values and multiply by 0.1.	2.1		51
Т-	3.1	 	

SI TABLE 16 (HRS TABLE 5-5): SOIL EXPOSURE PATHWAY TERRESTRIAL SENSITIVE ENVIRONMENT VALUES

*	TERRESTRIAL SENSITIVE ENVIRONMENT	ASSIGNED VALUE
	Terrestrial critical habitat for Federal designated endangered or threatened species National Park Designated Federal Wilderness Area National Monument	100
	Terrestrial habitat known to be used by Federal designated or proposed threatened or endangered species National Preserve (terrestrial) National or State terrestrial Wildlife Refuge Federal land designated for protection of natural ecosystems Administratively proposed Federal Wilderness Area Terrestrial areas utilized by large or dense aggregations of animals (vertebrate species) for breeding	75
*	Terrestrial habitat used by State designated endangered or threatened species Terrestrial habitat used by species under review for Federal designated endangered or threatened status	50
	State lands designated for wildlife or game management State designated Natural Areas Particular areas, relatively small in size, important to maintenance of unique biotic communities	25

^{* -} Check (x) all environments impacted or potentially impacted by the site.

SI TABLE 17 (HRS TABLE 5-6); ATTRACTIVENESS/ACCESSIBILITY VALUES

	Area of Observed Contamination	Assigned Value
	Designated recreation area	100
	Regularly used for public recreation (for example, vacant lot in urban area)	75
	Accessible and unique recreational area (for example, vacant lots in urban area)	75
	Moderately accessible (may have some access improvements - for example, gravel road) with some public recreation use.	50
	Slightly accessible (for example, extremely rural area with no road improvement) with some public recreation use	25
	Accessible with no public recreation use	10
*	Surrounded by maintained fence or combination of maintained fence and natural barriers	5
	Physically inaccessible to public, with no evidence of public recreation use	0

^{*} Check (X) highest value.

SI TABLE 18 (HRS TABLE 5-7): AREA OF CONTAMINATION FACTOR VALUES

*	Total area of the areas of observed contamination (square feet)	Assigned Value
	less than or equal to 5,000 (0.115 acres)	5
	> 5,000 to 125,000 (0.115 - 2.87 acres)	20
	> 125,000 to 250,000 (2.87 - 5.74 acres)	40
	> 250,000 to 375,000 (5.75 - 8.6 acres)	60
	> 375,000 to 500,000 (8.6 - 11.5 acres)	80
	> 500,000 (11.5 acres)	100

^{*} Check (X) highest value.

SI TABLE 19 (HRS TABLE 5-8): NEARBY POPULATION LIKELIHOOD OF EXPOSURE FACTOR VALUES

100	75	50	25	10	5	
500	500	375	250		50	
500	375	250				0
375	250				25	0
250	125			23		0
125	50		5		- 3	0
50	25	5	5.		5	0
	500 500 375 250 125	100 75 500 500 500 375 375 250 250 125 125 50	100 75 50 500 500 375 500 375 250 375 250 125 250 125 50 125 50 25	Attractiveness/Accessible 100 75 50 25 500 500 375 250 500 375 250 125 375 250 125 50 250 125 50 25 125 50 25 5	500 500 375 250 125 500 375 250 125 50 375 250 125 50 25 250 125 50 25 5 125 50 25 5 5 125 50 25 5 5	Attractiveness/Accessibility Factor Value 100 75 50 25 10 5 500 500 375 250 125 50 500 375 250 125 50 25 375 250 125 50 25 5 250 125 50 25 5 5 125 50 25 5 5 125 50 25 5 5

Note:

SI TABLE 20 (HRS TABLE 5-10): DISTANCE-WEIGHTED POPULATION VALUES FOR NEARBY POPULATION THREATS

Travel		ļ	Number of people within the travel distance category											
Distance Category (miles)	Pop.	0	1 to 10	11 to 30	31 to 100	101 to 300	301 to 1,000	1,001 to 3,000	3,001 to 10,000	10,001 to 30,000	30,001 to 100,000	100,001 to	300,001 to	Pop.
Greater than 0 to 1/4	122	0	0.1	0.4	1	4	13	41	130	408	1,303	300,000	1,000,000	Value
Greater than 1/4 to 1/2	367	0	0.05	0.2	0.7	2	7	20	65	204	652	4,081 	13,034	4
Greater than	1270	0	0.02	0.1	. 0.3	1	3	10	33	102	326	1,020	3,258	10

References: 51
Notes:

Page 33

SOIL EXPOSURE PATHWAY WORKSHEET (concluded)

WASI	E CHARACTI					Score
10.	Assign the ha	azardous waste quantity sc	ore calculated for soil e	exposure.		10
11.	Assign the hi	ghest toxicity value for SI	Table 15b or Table 3.			
			•		.	
	Substances(s):	PCBs	Mercury	- <u></u>		
	Value:	10,000	10,000			
	From Table:	3	3			10000
	Multiply the	e toxicity and hazardous w	aste quantity scores. A	noign the Wests		
12.	Characteris	tics score from the table be	elow:	issign me waste		
		Product	WC Score	*	7	•
		> 0	0		7	
		> 0 to < 10	1		7	
		≥ 10 to < 100	2		1]	
		≥ 100 to < 1,000	3		- -	
		≥ 1,000 to < 10,000	6	· · · · · · · · · · · · · · · · · · ·	7	
		≥ 10,000 to < 1E+05	10		-	
		≥ 1E+5 to < 1E+6	18	*	-	•
		≥ 1E+6 to < 1E+7	32		-†	
		≥ 1E+7 to < 1E+8	56	 	⊣ 1	
		≥ 1E+8 or greater	100		-	
		* check (x) the WC score		way	J	•
			pata	<u>.</u>	WC=	18
o roma	TAIM BODYTY A				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
ŒSIDE	ENT POPULA	ITON THREAT SCORE	:		<u></u>	
Likeliho	ood of Exposure	, Question 1:	LE x T x WC		_	1.80
		ons 2, 3, 4, 5, 6)	82,500		-	1.00
	•				<u> </u>	•
EARB	Y POPULATI	ON THREAT SCORE			_	
Likeliho	od of Exposure	Ouestion 7:	IEVT-BC			
	Sum of Questi	=	LE x T x WC 82,500	=	= [_	0.03
					•	
		THWAY SCORE:		Total Score] _ [
esident	Population Tl	reat + Nearby Populatio	on Threat =]	1.83
	Notes:	•			_	(Maximum of 100)

SI Table 21a: AIR PATHWAY OBSERVED RELEASE SUBSTANCES

Note: Mobility equals 1 for all observed release substances.

Sample ID	Hazardous Substance	Substance Concentration	Bckgrd. ID	Bckgrd. Conc.	Gaseous or Particulate	Toxicity/ Mobility	References
platile Organic Compounds - (VOCs)							
ni - Volatile Organic Compounds - (SVOCs	i)						
B/Pesticides							
tals/Cyanide							
	•						
tes: There is no engaine release to it.			Highest Toxicity	/ Mobility			

Notes: There is no ongoing release to the air pathway.

SI Table 21b: AIR PATHWAY ACTUAL CONTMINATION TARGETS

Note: Convert all results and SCDM values to μg per cubic meter or ppb.

If sum of percents calculated for I or J index is > or = 100%, consider the targets as Level I; If sum of percents calculated for I or J index is < 100%, consider the targets as Level II.

Sample ID:		Level I:		Level II:		Distance fro	m sources (mi):		
Hazardous Substance	Conc. (µg/m3)	Toxicity/ Mobility	Benchmark Conc. (NAAQS or NESHARPS)	% of Benchmark	Cancer Risk Conc. (J Index)	% of Cancer Risk Conc.	RfD (I Index)	% of RfD	References
Volatile Organic Compounds - (VOCs)									
Semi » Volatile Organic Compounds - (SVOC	.s)								
PCB/Pesticides							***************************************		~~
Metals/Cyanide Anhydeous Ammoina						Т			
Chlorine gas									
	Highest Tox./ Mobility		Highest Percent		Sum of Percents		Sum of Percents		

SCDM Version: Jun-96 References:

NOTE: There are no actual contamination targets.

	AIR PATHWAY WORKSHEET			
LIK	ELIHOOD OF RELEASE	C	Data T	
1.	OBSERVED RELEASE: If sampling data or direct observation support a	Score	Type	Refs
ĺ	release to the air, assign a score of 550. Record release substances on SI			
	Table 21.			
2.	POTENTIAL TO RELEASE: If sampling data do not support a release to the air,	 	 	
	assign a socre of 500. Optionally, evaluate air migration gaseous and particulate potential to release (HRS Section 6.1.2)	500		
<u> </u>	potential to release (rins section 6.1.2)			
	LR=	500		
T 4 F			Data	
_	GETS	Score	Туре	Refs
3.	ACTUAL CONTAMINATION POPULATION: Determine the number of people within			
	the target distance limit subject to exposure from a release of hazardous substance to the air.		İ	
	Level I: people x 10 = 0		, .] .
	Level II: people x 1 = 0 Level II: people x 1 = 0 Total =			
4.		0	<u> </u>	
→.	POTENTIAL TARGET POPULATION: Determine the number of people within the target distance limit not subject to exposure from a release of a hazardous substance to the air, and		1	
	assign the total population score from SI Table 22. Sum the values and multiply by 0.1.	14.1	1	51
		l L		ŀ
5.	NEAREST INDIVIDUAL: Assign a score of 50 if there are any Level I targets. Assign		 	
	a score of 45 if there are Level II targets but no Level I targets. If no Actual	20	ļ	
	Contamination Population exists, assign the Nearest Individual score from SI Table 22.	20		51
6.	ACTUAL CONTAMBLATION CONCERNS TO THE CONTRACTOR			
0.	ACTUAL CONTAMINATION SENSITIVE ENVIRONMENTS: Sum the sensitive environment values (SI Table 13) and wetland acreage values (SI Table 23) for			
	environments subject to exposure from the release of a hazardous substance to the air.			
	•			
	Sensitive Environment Type Value			
		,		
				•
	Wetland Acreage Value			
7.	DOTTO WILL GOVERN A CONTROL OF THE C	0	<u> </u>	63
٠.	POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENTS: Use SI Table 24 to evaluate sensitive environments not subject to exposure from a			
	release.	1.26	- 1	63
2	PECOLIDATE A STATE OF THE PERIOD OF THE PERI		·	
٠.	RESOURCES: Assign a socre of 5 if one or more air resources applies within 1/2 mile of a source; assign a "0" if none applies.		-	
	* Commercial agriculture		ļ	al-
• .	* Commercial silviculture	5	ľ	*
	* Major or designated recreation area		• 1	

* - to be conservative, resources are assumed.

Notes:

40.36

AIR PATHWAY WORKSHEET (concluded)

TE CHARACTERIST		- 		SCORE
If any Actual Contam hazardous waste quan Actual Contamination scores available for ai	10			
Assign the highest air	toxicity/mobility valu	e from SI Table 2	la or SI Table 3.	
			ļ	•
Substances(s):	Marrow			•
oubstances(s).	Mercury			
Value:	2000			••••
		•		2000
From Table:	3		,	
,			J	•
Product	WC Score	*	ן ר	
0	. 0		1	
> 0 to < 10	1		1	
10 to < 100	2			
100 to < 1,000	3			
1,000 to < 10,000	6] .	
10,000 to < 1E+05	10]	
1E+5 to < 1E+6	18	*]	
1E+6 to < 1E+7	32		·	•
1E+7 to < 1E+8	56]	
1E+8 or greater	100	<u></u>	j j	
* check (x) the WC scor	e calculated for the par	thway.		
•			WC=	10
lu I D bu T 4 bu NO 1				
atheirs seem is	Divide the product by 8	82,500 to obtain th	e air migration pathway score.	
athway score is greater th	izu 100, assign 100.			
IIGRATION PATHWA	Y CALCIII ATION.			
LExTxWC =	CALCOLATION:			
82,500	•		1	

(Maximum of 100)

SI TABLE 22 (From HRS TABLE 6-17): VALUES FOR POTENTIAL CONTAMINATION AIR TARGET POPULATIONS

		Nearest	NUMBER OF PEOPLE WITHIN THE DISTANCE CATEGORY									ı			
Distance From Site	Pop.	Individual (choose highest)	1 to 10	11 to 30	31 to 100	101 . to 300	301 to 1000	1001 to 3000	3001 to 10,000	10,001 to 30,000	30,001 to	100,001 to	300,001 to	1,000,001 to	Pop.
On a source	0	20 .	4	.17	53	164	522	1,633	5,214	<u> </u>	100,000	300,000	1,000,000	3,000,000	Value
0 to 1/4 mile	122	*	1	4	13	41	131	408		16,325	52,137	163,246	521,360	1,632,455	0
> 1/4 to 1/2 mile	367	2	0.2	0.9	3	0	28		1,304	4,081	13,034	40,812	130,340	408,114	41
> 1/2 to 1 mile	1270	1	0.06	0.3	0.9			88	282	882	2,815	8,815	28,153	88,153	28
> 1 to 2 mile	4258	0	0.02			3	8	26	83	261	834	2,612 •	8,342	26,119	26
2 to 3 mile	6233	0	0.02	0.09	0.3	0.8	3	8	27	83	266	833	2,659	8,326	27
3 to 4 mile	8068	0	0.005	0.02	0.07		1	4	12	38	120	375	1,199	3,755	12
	Nearest Individual =	20	0.005	0.02		0.2	. 0.7	2	7	28	73	229	730	2,285	7 141

^{*}Score = 20 if the Nearest Individual is within 1/8 mile of a source; score = 7 if the Nearest Individual is between 1/8 and 1/4 mile of a source.

References: 51 Notes:

SI TABLE 23 (HRS TABLE 6-18): AIR PATHWAY

VALUES FOR WETLAND AREA

*	Wetland Area	Assigned Value		
	< 1 acre	0		
	1 to 50 acres	25		
	> 50 to 100 acres	75		
	> 100 to 150 acres	125		
	> 150 to 200 acres	175		
	> 200 to 300 acres	250		
	> 300 to 400 acres	350		
	> 400 to 500 acres	450		
	> 500 acres	500		

^{*} Check (x) highest value.

Notes:

Ref: 59; 63

SI TABLE 24: DISTANCE WEIGHTS AND CALCULATIONS FOR AIR PATHWAY POTENTIAL CONTAMINATION SENSITIVE ENVIRONMENTS

Distance	Distance Weight	Sensitive Environment Type and Va (from SI Tables 13 and 23)	Produci	
	ļ	Name	Value	
On a Source	0.1	х		0
		х		0 .
0 to 1/4 mile	0.025	x Wetlands	25	0.625
,	,	x		0
·		x		0
1/4 to 1/2 mile	0.0054	x Wetlands	75	0.405
		х		0
		х		0
1/2 to 1 mile	0.0016	x Wetlands	75	0.12
		х		0
		х		0
1 to 2 miles	0.0005	x Wetlands	75	0.0375
		x		0
		х		0
2 to 3 miles	0.00023	x Wetlands	75	0.01725
		x 6 State listed Sensitive Environments	150	0.0345
		х		0 ·
3 to 4 miles	0.00014	x Wetlands		Ò
. أ		x 6 State listed Sensitive Environments	150	0.021
		х		0 .
> 4 miles	0	х		0
		Total Environ	ments Score =	1.26

				· · · · · · · · · · · · · · · · · · ·	
SITE SCORE CALCULAT	S	S 2			
GROUNDWATER PATHW	4.33	18.77			
SURFACE WATER PATHW	56.39	3179.65			
SOIL EXPOSURE	1.83	3.36			
AIR PATHWAY SCORE	,	(S _S)	2.45	5.98	
SITE SCORE					
S _{GW}	+ S _{SW} 2	+ S S + S A	=		
΄ \		4	•	28.32	
4.33	+ 56.39	+ 1.83 2 2 2	_		
\		4		·	
		•			

COMMENTS:

WARNING!!

EPA has determined that the status and HRS score of any site that is progressing towards listing on the NPL is a pre-decisional, formal rule making process and therefore deliberations regarding listing issues, the site status, and HRS scores cannot be released or discussed with non-Agency persons. For additional guidance see the April 30, 1993 OSWER Directive 9320.1-11.